5	SHRI SHANKARACHARYA INS'	TITUTE OF PROFESSIONAL M	ANAGEMEN	I AND IF		
	DEPART	MENT OF MECHANICAL EN	GINEERIN	G		
С	lass Test – I	Session- Jan to July, 2023		Mont	h- Aprıl	
	Sem- 6 th	Subject- DESIGN OF MACHIN	NE ELEMEN	Т		
Code	- C037611(037)	Time Allowed: 2 hrs		Max N	Aarks: 40	(d) of
Note: -	Attempt all question. Parts (a) a	are compulsory of each question.	. Solve any tv	vo parts fro	om (b), (c) and	(a) 01
Q.	uestion.	Questions		Marks	Levels of Bloom's taxonomy	СО
		Unit – I				
1.A	What is factor of safety? Why i analysis and design? What is al	s it necessary to use factor of saf lowable stress?	ety m	4	Analyzing	CO1
1.B	A cantilever beam of rectangula shown in Figure. The tension in cast iron FG 200 and the factor of the cross-section is 2. Deter the beam.	ar cross-section is used to support in the wire rope is 5 kN. The beam r of safety is 2.5. The ratio of dep rmine the dimensions of the cross 1500 - + 500 + 500 500 + 500 500 + 500 500 + 500 500 + 500 500 + 500 500 + 500	t a pulley as n is made of oth to width s-section of	8	Creating	со
1.C	A wall bracket with a rectand depth of the cross-section is to bracket at 600 to the vertical is iron FG 200 and the factor of cross-section of the bracket.	gular cross-section is shown in twice of the width. The force P as s 5 kN. The material of the brack safety is 3.5. Determine the dime Assume maximum normal stre	Figure. The acting on the et is grey cast ensions of the ess theory of	8	Creating	CC

	Unit – II				_
2.A	What is stress concentration? What are the causes of stress concentration? Analyse the methods of reducing stress concentration?	4	Analyzing	CO2	
2.B	A non-rotating shaft supporting a load of 2.5 kN is shown in Figure. The shaft is made of brittle material, with an ultimate tensile strength of 300 N/mm2. The factor of safety is 3. Determine the dimensions of the shaft.	8	Creating	COI	
2.C	A component machined from a plate made of steel 45C8 (Sut = 630 N/mm2) is shown in Fig. 5.29. It is subjected to a completely reversed axial force of 50 kN. The expected reliability is 90% and the factor of safety is 2. The size factor is 0.85. Determine the plate thickness t for infinite life, if the notch sensitivity factor is 0.8.	8	Creating	CO3	

kinsok hin

	SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY							
	DEPARTMENT OF MECHANICAL ENGINEERING							
(Class Test – I	Session- Jan – June 2023	Мо	Month- April				
	Sem-6 th Subject- Manufacturing Technology							
Cod	le - C037612(037)	Max	Marks: 40					
Note: ·	 Note: - 1. Students are Required to focus on question and marks columns only. 2. Support your answers with neat sketches. 3. In Unit I & II, Question A is compulsory and attempt any two from B. C & D. 							
Q. No	Questions		Marks	Levels of Bloom's taxonomy	СО			
		Unit – I						
1.A	What is grit, grade a	and structure of abrasives?	4	Understanding	CO1			
1.B	Explain honing and explain honing operation very briefly with their types?		8	Understanding	· CO1			
1.C	C Explain external cylindrical grinding and surface grinding with neat sketch?		8	Understanding	CO1			
1.D	Explain with diagram lapping and super finishing process?		8	Applying	CO1			

	Unit – I		1.2.2	
2.A	What is MRR? In which process MRR is high?	4	Understanding	CO2
2.B	Explain EBM?	8	Applying	CO2
2.C	Explain the mechanics of electro chemical grinding?	8	Applying	CO2
2.D	How the working of abrasive jet machining helps to rectify the surface finishing of workpiece?	8	Applying	CO2

	SHRI SHANKARA	CHARYA INSTITUTE OF PROFESSIONAL MANAGEM	NC		
		DEPARTMENT OF MECHANICAL ENGINEER	NG Ma	nth- April	
Cl	ass Test – I	Session- Jan – June 2023	IVIO		
	Sem- 6 th	Subject- Power Plant Engineering		Markey 10	
Code	- C037632(037)	Time Allowed: 2 hrs	Max	Marks: 40	
ote: - 1	1. Students are Requ	ired to focus on question and marks columns only.			
Q.	2. In Unit I & II, Qu	Questions	Marks	Levels of Bloom's taxonomy	C
10		Unit – I			
1.A	Describe main c	omponents of electrical distribution system.	4	Remembering	1
1.B	Describe Primar	y and secondary power distribution system.	8	Understanding	
1.C	Explain the vari sketches.	ous types of coal Transferring system with neat	8	Understanding	
1.D	Sketch the Layo disadvantages,	out of Gas power plant and explain Advantages, applications.	8	Understanding	
		Unit – II			
2.A	Define Steam r	ate, Heat rate, work ratio and super heater.	4	Understanding	
2.B	Sketch The lay circuit involve	out of modern Steam Power Plant and explain all d in it.	8	Understanding	
2.C	Explain the for (i) Lor (ii) His	ollowing with a neat sketch. w Pressure Ash Handling System. gh Pressure Ash Handling System	8	Remembering	
2.0	A turbine is temperature o pressure of (expansion and If the steam to expand isentr drypess fracti	supplied with steam at a pressure of 32 bar and f $410^{\circ}c$. the steam then expands isentropically to 0.008 bar. Find the dryness fraction at the end of thermal efficiency of the cycle. Thermal to a temperature of $400^{\circ}c$ and the opically to a pressure of 0.08 bar what will be the opically to a pressure of 0.08 bar what will be the opically thermal efficiency of the cycle?	a f 8 n e	Applying	

S	HRI SHANKARACHARYA I	NSTITUTE OF PROFESSIONAL TECHNOLOGY	MANAGE	MENT AND	
	DEPARTME	NT OF MECHANICAL ENGINEE	RING	April 2023	
Cl	Class Test – I Session- Jan-June, 2023		Wiontn-	April, 2020	
Se	Semester - 6thSubject- Principles of ManagementCode - C000635(037)Time Allowed: 2 Hours		Max	Marks: 40	1 and
Note: - 2, atter	Part A(MCQ) of questions 1 a. mpt any two parts.	nd 2 is compulsory, from other parts 's taxonomy and CO.	B, C and I) oj questions	1 (1774
Ignore Q. No	Q	uestions	Marks	Levels of Bloom's taxonomy	CO
		Question – 1			<u></u>
1.A	Write the objectives of product	ion planning and control.	4	U	1
1.B	What is Aggregate plannin Aggregate planning.	g? Explain the characteristics o	f 8	U	1
	the destinations of Mana	gement with suitable examples.	8	А	1
1.C	Analyse the junctions of Metha	manager in any organization.	8	А	1

				Question – 2			
2.A		Linder rimifican	ce of Sequencing	in production.	4	U	1
2.B	Expl Expl	lain the four majo	r skills are expec	ted to have in a Manager.	8	U	1
	2 m John min	achines and Six n son's algorithm imize the make sp	jobs follow sho n obtain the c an. Find the val	p scheduling problem. Usi optimal sequence which w ue of make span and idle tim	vill ne.		
		Job	1	Time taken by m/cs, hr	-		
2.C		1.	5	4	8	А	1
		2.	2	3			
		3.	13	14		çi.	
	1	4.	10	1			
		5.	8	9	_	E.	
		6.	12	11			
			f Drug duction	planning and control (PPC).	8	А	1
2.D	Ex	plain the function	s of Froduction f		0		

SH	IRI SHANKARACH	ARYA INSTITUTE OF PROFESSIONAL MANA	GEMENT AND	TECHNOLOG	Y
511		DEPARTMENT OF MECHANICAL ENGIN	EERING		
Cl	ass Test – I	Session- Jan-June, 2023	Month	- April, 2023	
	Sem- 6 th	Subject- HMT			
Sul	bject Code –	Time Allowed: 2hr.	Max	Marks: 40	
ote: - 1 Solve	1. first Question (A) any two from B, C,	from both parts are compulsory. D of each part.			
Q. No		Questions	Marks	Levels of Bloom's taxonomy	СС
		Part – I			
1.A	Define Fourie's lav	v of Conduction and Thermal Diffusivity	4	R	1
1.B	Derive a Three-Di Co-ordinates for t	imensional general conduction equation in Sph he homogeneous material.	nerical 8	U	
1.C	Two slabs, each W/m°C and 210 roughness, only 3 remaining area temperature of t side surface of an	120 mm thick, have thermal conductivities of W/m°C. These are placed in contact, but d 00 percent of the area is in contact and the gap is 0.025 mm thick and is filled with air. he face of the hot surface is at 220°C and the or other slab is at 30°C, determine:	f 14.5 lue to in the If the putside 8	Ap	
	(ii) The contact re	esistance and temperature drop in contact.	•	n si para an a si	
	Assume that the	conductivity of air is 0.032 W/m°C and that half	f of the		
	A furnace wall is inside layer is m layer is made of temperature of temperature is S and inner surfa outside. surface and atm calculate:	made of composite wall of total thickness 550 m ade of refractory material (K = 2.3 W/mK) and of an insulating material (K = 0.2 W/mK). The the glass inside the furnace is 900°C and inte 520°C. The heat transfer coefficient between th ice can be taken as 230 W/m2°C and betwee nosphere as 46 W/m2°C. Taking air temperature	nm. The outside e mean er- face e gases een the = 30°C, 8	Ap	
1.D	(i) Dequired this	kness of each layer,			
1.D	(i) Required the				-

21/04/23/MECH/HM7/5-5/6H

	Part– 11				
2.A	Explain Thermal Resistance for Conduction and Convection.	4	R	1	
2.B	Derive an equation of Temperature distribution and thermal resistance for hollow Cylinder.	8	U	1	
2.C	A steel pipe with 50 mm OD is covered with 6.4 mm asbestos. insulation [$k = 0.166$ W/mK] followed by a 25 mm layer of fiber-glass insulation [$k = 0.0485$ W/mK]. The pipe wall temperature is 393 K and the outside insulation temperature is 311 K. Calculate the interface temperature between the asbestos and fiber-glass:	8	Ар	1	
2.D	An insulated steam pipe having an outside diameter of 30 mm is to be covered with two layers of insulation, each having a thickness of 20 mm. The thermal conductivity of one material is 5 times that of the other. Assuming that the inner and outer surface temperatures of composite insulation are fixed, how much will heat transfer be increased when better insulation material is next to the pipe than it is outer layer?	8	Ар	1	